Substochastic matrices and von Neumann majorization

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Von Neumann entropy and majorization

We consider the properties of the Shannon entropy for two probability distributions which stand in the relationship of majorization. Then we give a generalization of a theorem due to Uhlmann, extending it to infinite dimensional Hilbert spaces. Finally we show that for any quantum channel Φ, one has S(Φ(ρ)) = S(ρ) for all quantum states ρ if and only if there exists an isometric operator V such...

متن کامل

Symmetric Laplacians, Quantum Density Matrices and their Von-Neumann Entropy

We show that the (normalized) symmetric Laplacian of a simple graph can be obtained from the partial trace over a pure bipartite quantum state that resides in a bipartite Hilbert space (one part corresponding to the vertices, the other corresponding to the edges). This suggests an interpretation of the symmetric Laplacian’s Von Neumann entropy as a measure of bipartite entanglement present betw...

متن کامل

Preprint Series 2012 / 2013 No : 11 Title : ‘ Von Neumann Entropy and Majorization ’ Author ( S )

In this paper, we firstly consider the properties of the Shannon entropy for two probability distributions which stand in the relationship of majorization. Then we give a generalized Uhlmann theorem in an infinite dimension Hilbert space. Also, we show that S(Φ(ρ)) = S(ρ) for all quantum states ρ if and only if there exists an isometry operator V such that Φ(ρ) = V ρV , where Φ is a quantum cha...

متن کامل

Von Neumann Quantum Logic vs. Classical von Neumann Architecture?

The name of John von Neumann is common both in quantum mechanics and computer science. Are they really two absolutely unconnected areas? Many works devoted to quantum computations and communications are serious argument to suggest about existence of such a relation, but it is impossible to touch the new and active theme in a short review. In the paper are described the structures and models of ...

متن کامل

Nonlinear $*$-Lie higher derivations on factor von Neumann algebras

Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1987

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(87)90328-4